direct product, metabelian, soluble, monomial, A-group
Aliases: C2×C24⋊C9, C25⋊2C9, C24⋊4C18, (C24×C6).2C3, (C23×C6).6C6, C6.3(C22⋊A4), C23⋊3(C3.A4), (C22×C6).12A4, C3.(C2×C22⋊A4), C22⋊(C2×C3.A4), (C2×C6).13(C2×A4), SmallGroup(288,838)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C24 — C23×C6 — C24⋊C9 — C2×C24⋊C9 |
C24 — C2×C24⋊C9 |
Generators and relations for C2×C24⋊C9
G = < a,b,c,d,e,f | a2=b2=c2=d2=e2=f9=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, fbf-1=bc=cb, bd=db, be=eb, cd=dc, ce=ec, fcf-1=b, fdf-1=de=ed, fef-1=d >
Subgroups: 822 in 282 conjugacy classes, 30 normal (10 characteristic)
C1, C2, C2, C3, C22, C22, C6, C6, C23, C23, C9, C2×C6, C2×C6, C24, C24, C18, C22×C6, C22×C6, C25, C3.A4, C23×C6, C23×C6, C2×C3.A4, C24×C6, C24⋊C9, C2×C24⋊C9
Quotients: C1, C2, C3, C6, C9, A4, C18, C2×A4, C3.A4, C22⋊A4, C2×C3.A4, C2×C22⋊A4, C24⋊C9, C2×C24⋊C9
(1 17)(2 18)(3 10)(4 11)(5 12)(6 13)(7 14)(8 15)(9 16)(19 33)(20 34)(21 35)(22 36)(23 28)(24 29)(25 30)(26 31)(27 32)
(1 32)(3 34)(4 35)(6 28)(7 29)(9 31)(10 20)(11 21)(13 23)(14 24)(16 26)(17 27)
(1 32)(2 33)(4 35)(5 36)(7 29)(8 30)(11 21)(12 22)(14 24)(15 25)(17 27)(18 19)
(1 17)(2 19)(3 34)(4 11)(5 22)(6 28)(7 14)(8 25)(9 31)(10 20)(12 36)(13 23)(15 30)(16 26)(18 33)(21 35)(24 29)(27 32)
(1 32)(2 18)(3 20)(4 35)(5 12)(6 23)(7 29)(8 15)(9 26)(10 34)(11 21)(13 28)(14 24)(16 31)(17 27)(19 33)(22 36)(25 30)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
G:=sub<Sym(36)| (1,17)(2,18)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(9,16)(19,33)(20,34)(21,35)(22,36)(23,28)(24,29)(25,30)(26,31)(27,32), (1,32)(3,34)(4,35)(6,28)(7,29)(9,31)(10,20)(11,21)(13,23)(14,24)(16,26)(17,27), (1,32)(2,33)(4,35)(5,36)(7,29)(8,30)(11,21)(12,22)(14,24)(15,25)(17,27)(18,19), (1,17)(2,19)(3,34)(4,11)(5,22)(6,28)(7,14)(8,25)(9,31)(10,20)(12,36)(13,23)(15,30)(16,26)(18,33)(21,35)(24,29)(27,32), (1,32)(2,18)(3,20)(4,35)(5,12)(6,23)(7,29)(8,15)(9,26)(10,34)(11,21)(13,28)(14,24)(16,31)(17,27)(19,33)(22,36)(25,30), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)>;
G:=Group( (1,17)(2,18)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(9,16)(19,33)(20,34)(21,35)(22,36)(23,28)(24,29)(25,30)(26,31)(27,32), (1,32)(3,34)(4,35)(6,28)(7,29)(9,31)(10,20)(11,21)(13,23)(14,24)(16,26)(17,27), (1,32)(2,33)(4,35)(5,36)(7,29)(8,30)(11,21)(12,22)(14,24)(15,25)(17,27)(18,19), (1,17)(2,19)(3,34)(4,11)(5,22)(6,28)(7,14)(8,25)(9,31)(10,20)(12,36)(13,23)(15,30)(16,26)(18,33)(21,35)(24,29)(27,32), (1,32)(2,18)(3,20)(4,35)(5,12)(6,23)(7,29)(8,15)(9,26)(10,34)(11,21)(13,28)(14,24)(16,31)(17,27)(19,33)(22,36)(25,30), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36) );
G=PermutationGroup([[(1,17),(2,18),(3,10),(4,11),(5,12),(6,13),(7,14),(8,15),(9,16),(19,33),(20,34),(21,35),(22,36),(23,28),(24,29),(25,30),(26,31),(27,32)], [(1,32),(3,34),(4,35),(6,28),(7,29),(9,31),(10,20),(11,21),(13,23),(14,24),(16,26),(17,27)], [(1,32),(2,33),(4,35),(5,36),(7,29),(8,30),(11,21),(12,22),(14,24),(15,25),(17,27),(18,19)], [(1,17),(2,19),(3,34),(4,11),(5,22),(6,28),(7,14),(8,25),(9,31),(10,20),(12,36),(13,23),(15,30),(16,26),(18,33),(21,35),(24,29),(27,32)], [(1,32),(2,18),(3,20),(4,35),(5,12),(6,23),(7,29),(8,15),(9,26),(10,34),(11,21),(13,28),(14,24),(16,31),(17,27),(19,33),(22,36),(25,30)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)]])
48 conjugacy classes
class | 1 | 2A | 2B | ··· | 2K | 3A | 3B | 6A | 6B | 6C | ··· | 6V | 9A | ··· | 9F | 18A | ··· | 18F |
order | 1 | 2 | 2 | ··· | 2 | 3 | 3 | 6 | 6 | 6 | ··· | 6 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 1 | 3 | ··· | 3 | 1 | 1 | 1 | 1 | 3 | ··· | 3 | 16 | ··· | 16 | 16 | ··· | 16 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 |
type | + | + | + | + | ||||||
image | C1 | C2 | C3 | C6 | C9 | C18 | A4 | C2×A4 | C3.A4 | C2×C3.A4 |
kernel | C2×C24⋊C9 | C24⋊C9 | C24×C6 | C23×C6 | C25 | C24 | C22×C6 | C2×C6 | C23 | C22 |
# reps | 1 | 1 | 2 | 2 | 6 | 6 | 5 | 5 | 10 | 10 |
Matrix representation of C2×C24⋊C9 ►in GL6(𝔽19)
18 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
18 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 7 | 0 | 1 |
18 | 0 | 0 | 0 | 0 | 0 |
6 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 9 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 18 |
18 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 10 | 18 | 0 |
0 | 0 | 0 | 12 | 0 | 18 |
18 | 0 | 0 | 0 | 0 | 0 |
6 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 7 | 0 | 1 |
13 | 17 | 0 | 0 | 0 | 0 |
9 | 6 | 1 | 0 | 0 | 0 |
7 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 5 | 18 | 0 |
0 | 0 | 0 | 0 | 14 | 1 |
0 | 0 | 0 | 10 | 13 | 0 |
G:=sub<GL(6,GF(19))| [18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[18,0,1,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,7,0,0,0,0,18,0,0,0,0,0,0,1],[18,6,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,18,9,0,0,0,0,0,1,0,0,0,0,0,0,18],[18,0,1,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,10,12,0,0,0,0,18,0,0,0,0,0,0,18],[18,6,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,7,0,0,0,0,18,0,0,0,0,0,0,1],[13,9,7,0,0,0,17,6,1,0,0,0,0,1,0,0,0,0,0,0,0,5,0,10,0,0,0,18,14,13,0,0,0,0,1,0] >;
C2×C24⋊C9 in GAP, Magma, Sage, TeX
C_2\times C_2^4\rtimes C_9
% in TeX
G:=Group("C2xC2^4:C9");
// GroupNames label
G:=SmallGroup(288,838);
// by ID
G=gap.SmallGroup(288,838);
# by ID
G:=PCGroup([7,-2,-3,-3,-2,2,-2,2,50,514,956,3036,5305]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^2=f^9=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,f*b*f^-1=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,f*c*f^-1=b,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations