Copied to
clipboard

G = C2×C24⋊C9order 288 = 25·32

Direct product of C2 and C24⋊C9

direct product, metabelian, soluble, monomial, A-group

Aliases: C2×C24⋊C9, C252C9, C244C18, (C24×C6).2C3, (C23×C6).6C6, C6.3(C22⋊A4), C233(C3.A4), (C22×C6).12A4, C3.(C2×C22⋊A4), C22⋊(C2×C3.A4), (C2×C6).13(C2×A4), SmallGroup(288,838)

Series: Derived Chief Lower central Upper central

C1C24 — C2×C24⋊C9
C1C22C24C23×C6C24⋊C9 — C2×C24⋊C9
C24 — C2×C24⋊C9
C1C6

Generators and relations for C2×C24⋊C9
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e2=f9=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, fbf-1=bc=cb, bd=db, be=eb, cd=dc, ce=ec, fcf-1=b, fdf-1=de=ed, fef-1=d >

Subgroups: 822 in 282 conjugacy classes, 30 normal (10 characteristic)
C1, C2, C2, C3, C22, C22, C6, C6, C23, C23, C9, C2×C6, C2×C6, C24, C24, C18, C22×C6, C22×C6, C25, C3.A4, C23×C6, C23×C6, C2×C3.A4, C24×C6, C24⋊C9, C2×C24⋊C9
Quotients: C1, C2, C3, C6, C9, A4, C18, C2×A4, C3.A4, C22⋊A4, C2×C3.A4, C2×C22⋊A4, C24⋊C9, C2×C24⋊C9

Smallest permutation representation of C2×C24⋊C9
On 36 points
Generators in S36
(1 17)(2 18)(3 10)(4 11)(5 12)(6 13)(7 14)(8 15)(9 16)(19 33)(20 34)(21 35)(22 36)(23 28)(24 29)(25 30)(26 31)(27 32)
(1 32)(3 34)(4 35)(6 28)(7 29)(9 31)(10 20)(11 21)(13 23)(14 24)(16 26)(17 27)
(1 32)(2 33)(4 35)(5 36)(7 29)(8 30)(11 21)(12 22)(14 24)(15 25)(17 27)(18 19)
(1 17)(2 19)(3 34)(4 11)(5 22)(6 28)(7 14)(8 25)(9 31)(10 20)(12 36)(13 23)(15 30)(16 26)(18 33)(21 35)(24 29)(27 32)
(1 32)(2 18)(3 20)(4 35)(5 12)(6 23)(7 29)(8 15)(9 26)(10 34)(11 21)(13 28)(14 24)(16 31)(17 27)(19 33)(22 36)(25 30)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)

G:=sub<Sym(36)| (1,17)(2,18)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(9,16)(19,33)(20,34)(21,35)(22,36)(23,28)(24,29)(25,30)(26,31)(27,32), (1,32)(3,34)(4,35)(6,28)(7,29)(9,31)(10,20)(11,21)(13,23)(14,24)(16,26)(17,27), (1,32)(2,33)(4,35)(5,36)(7,29)(8,30)(11,21)(12,22)(14,24)(15,25)(17,27)(18,19), (1,17)(2,19)(3,34)(4,11)(5,22)(6,28)(7,14)(8,25)(9,31)(10,20)(12,36)(13,23)(15,30)(16,26)(18,33)(21,35)(24,29)(27,32), (1,32)(2,18)(3,20)(4,35)(5,12)(6,23)(7,29)(8,15)(9,26)(10,34)(11,21)(13,28)(14,24)(16,31)(17,27)(19,33)(22,36)(25,30), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)>;

G:=Group( (1,17)(2,18)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(9,16)(19,33)(20,34)(21,35)(22,36)(23,28)(24,29)(25,30)(26,31)(27,32), (1,32)(3,34)(4,35)(6,28)(7,29)(9,31)(10,20)(11,21)(13,23)(14,24)(16,26)(17,27), (1,32)(2,33)(4,35)(5,36)(7,29)(8,30)(11,21)(12,22)(14,24)(15,25)(17,27)(18,19), (1,17)(2,19)(3,34)(4,11)(5,22)(6,28)(7,14)(8,25)(9,31)(10,20)(12,36)(13,23)(15,30)(16,26)(18,33)(21,35)(24,29)(27,32), (1,32)(2,18)(3,20)(4,35)(5,12)(6,23)(7,29)(8,15)(9,26)(10,34)(11,21)(13,28)(14,24)(16,31)(17,27)(19,33)(22,36)(25,30), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36) );

G=PermutationGroup([[(1,17),(2,18),(3,10),(4,11),(5,12),(6,13),(7,14),(8,15),(9,16),(19,33),(20,34),(21,35),(22,36),(23,28),(24,29),(25,30),(26,31),(27,32)], [(1,32),(3,34),(4,35),(6,28),(7,29),(9,31),(10,20),(11,21),(13,23),(14,24),(16,26),(17,27)], [(1,32),(2,33),(4,35),(5,36),(7,29),(8,30),(11,21),(12,22),(14,24),(15,25),(17,27),(18,19)], [(1,17),(2,19),(3,34),(4,11),(5,22),(6,28),(7,14),(8,25),(9,31),(10,20),(12,36),(13,23),(15,30),(16,26),(18,33),(21,35),(24,29),(27,32)], [(1,32),(2,18),(3,20),(4,35),(5,12),(6,23),(7,29),(8,15),(9,26),(10,34),(11,21),(13,28),(14,24),(16,31),(17,27),(19,33),(22,36),(25,30)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)]])

48 conjugacy classes

class 1 2A2B···2K3A3B6A6B6C···6V9A···9F18A···18F
order122···233666···69···918···18
size113···311113···316···1616···16

48 irreducible representations

dim1111113333
type++++
imageC1C2C3C6C9C18A4C2×A4C3.A4C2×C3.A4
kernelC2×C24⋊C9C24⋊C9C24×C6C23×C6C25C24C22×C6C2×C6C23C22
# reps112266551010

Matrix representation of C2×C24⋊C9 in GL6(𝔽19)

1800000
0180000
0018000
000100
000010
000001
,
1800000
0180000
101000
0001800
0000180
000701
,
1800000
610000
0018000
0001800
000910
0000018
,
1800000
0180000
101000
000100
00010180
00012018
,
1800000
610000
0018000
0001800
0000180
000701
,
13170000
961000
710000
0005180
0000141
00010130

G:=sub<GL(6,GF(19))| [18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[18,0,1,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,7,0,0,0,0,18,0,0,0,0,0,0,1],[18,6,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,18,9,0,0,0,0,0,1,0,0,0,0,0,0,18],[18,0,1,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,10,12,0,0,0,0,18,0,0,0,0,0,0,18],[18,6,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,7,0,0,0,0,18,0,0,0,0,0,0,1],[13,9,7,0,0,0,17,6,1,0,0,0,0,1,0,0,0,0,0,0,0,5,0,10,0,0,0,18,14,13,0,0,0,0,1,0] >;

C2×C24⋊C9 in GAP, Magma, Sage, TeX

C_2\times C_2^4\rtimes C_9
% in TeX

G:=Group("C2xC2^4:C9");
// GroupNames label

G:=SmallGroup(288,838);
// by ID

G=gap.SmallGroup(288,838);
# by ID

G:=PCGroup([7,-2,-3,-3,-2,2,-2,2,50,514,956,3036,5305]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^2=f^9=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,f*b*f^-1=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,f*c*f^-1=b,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

׿
×
𝔽